
Autonomous Spacecraft Inspection with
Free-Flying Drones

Sami Mian∗, Tyler Garrett∗, Alexander Glandon†, Christopher Manderino∗,
Swee Balachandran‡, César A. Muñoz§, and Chester V. Dolph§

Email: {sam415, tmg61, clm199}@pitt.edu, aglan001@odu.edu,
{sweewarman.balachandran, cesar.a.munoz, chester.v.dolph}@nasa.gov

∗NSF SHREC Center, University of Pittsburgh, Pittsburgh, PA, USA
†Old Dominion University, Norfolk, VA, USA

‡National Institute of Aerospace, Hampton, VA, USA
§NASA Langley Research Center, Hampton, VA, USA

Abstract—This paper describes a proof-of-concept mission
demonstrating a multi-agent system performing visual inspec-
tion of damage sustained by a spacecraft. Free-flying satellites,
simulated by unmanned aerial vehicles (UAVs), autonomously fly
around a mock space module maximizing the search space for
damage detection. The free-flyers are responsible for indepen-
dently coordinating their flights to avoid collision with the space
module and each other, while executing mission tasks. Damage
analysis on the surface of the mock space module is performed
in real-time using video from each free-flyer. Three-dimensional
modeling is deployed offline to supplement and improve damage
detection. This approach demonstrates the feasibility of deploying
real space systems for damage detection, where 2D analysis
can quickly determine region of interest and 3D visualization
can produce a human-navigable virtual environment with depth
perspective for further investigation.

Index Terms—unmanned aerial vehicle (UAV), multi-agent
cooperation, computer vision, autonomous systems, free-flyer
spacecraft, in-space assembly

I. INTRODUCTION

In the past 20 years, space technology has rapidly evolved,
presenting new challenges to a growing number of spacecraft
in Earth’s orbit. A major hazard for spacecraft is structural
damage from collision with orbital debris or ablation. Struc-
tural damage may degrade performance and, in the worst case,
cause catastrophic failure. According to [1], debris larger than
1cm can cause significant damage to a satellite endangering
the spacecraft or its mission. As of January 2019, there are
nearly one million pieces of space debris greater than 1cm in
length estimated to be orbiting around Earth. The number of
pieces less than 1cm that could still cause sensor damage is
estimated to be over 128 million. As the United States and
other countries take aim for new, large vessels like the Lunar
Orbital Platform, these problems will continue to threaten the
next generation of spacecraft.

The works in [2], [3] consider detecting damage on satellites
prior to being launched into space. In contrast to those works,
the research in this paper considers the problem of damage
detection for a spacecraft after launch and in-orbit. This

effort simulates a swarm of autonomous free-flyer satellites
surveying a larger spacecraft for possible damage. In order to
test the feasibility of the proposed damage detection system,
a testbed is developed to simulate several free-flyer satellites
working in unison to scan and inspect a simulated larger
satellite body. Multiple unmanned aerial vehicles (UAVs) are
used to simulate a free-flyer swarm. Each UAV is controlled
using NASA’s Independent Configurable Architecture for
Reliable Operations of Unmanned Systems (ICAROUS) [4].
ICAROUS is an onboard software architecture intended to
enable the development of autonomous UAV operations.
ICAROUS consists of several distributed applications
communicating over a software bus provided by NASA’s
core Flight System (cFS) [5]. This work extends ICAROUS
to autonomous spaceflight for in-orbit systems. In particular,
a 2D damage analysis application is developed for real-time
damage detection via video feed. Additionally, several post-
processing techniques were used to create a 3D reconstruction
of the object-of-interest, including visible damage, for further
post-mission analysis. This work demonstrates the viability
of using ICAROUS on a swarm of free-flyers for detecting
external damage on spacecraft in orbit.

II. BACKGROUND

From the SPHERES project to Astrobees and Int-Ball, over
the past decade, many teams have engaged long running exper-
iments with free-flying small satellites. This work approaches
mock missions for these maneuverable space robots using
UAVs running ICAROUS.

A. Using UAVs for Damage Detection

Several studies have been conducted on the use of a UAV
mounted camera for visual inspection of a building [6], [7].
More recent work has focused on sensor fusion techniques,
combining sensor data from multiple UAVs to create more
accurate analysis of damage to building structures [8]. Further

work has taken advantage of a UAV’s capabilities to move in
three dimensions using LIDAR and IR systems to create highly
accurate 3D maps [9], [10], as well as perform group sensing
tasks, such as search and rescue operations [11]. Usually
referred to as a “swarm,” a large group of UAVs is capable of
cooperating to achieve a common goal or collective behavior
[12]–[14]. Swarms also provide greater robustness against
mission failures, via redundancy and error checking [15], [16].
Often, all agents in a swarm use a common communication
platform for coordination. Some swarms are organized by a
single leader; decentralized swarm models may require each
UAV retain individual autonomy to make its own choices but
share data. This work develops a scalable multi-agent system
to utilize as many agents as possible to conduct inspections,
drawing on work from the field of swarm robotics.

B. Overview of cFS
cFS is a mission framework for flight software applications

developed at NASA Goddard Space Flight Center (GSFC). It
consists of a dynamic runtime environment, layered software
systems, and a component-based design [5]. cFS has a layered
architecture that supports a variety of software and hardware
platforms. cFS also provides a standardized application pro-
gramming interface (API) for easier application development.
The cFS software has been designed for spaceflight systems
and is bundled with a variety of tools that help develop robust,
safety-critical code for mission success.

C. Overview of ICAROUS
ICAROUS is an onboard software capability for UAVs de-

veloped at NASA Langley Research Center [4]. ICAROUS is
intended to enable autonomous decision making and to provide
functionalities needed for beyond visual line of sight UAS
operations. ICAROUS consists of several applications com-
municating over a software bus provided by cFS. ICAROUS
runs on an onboard companion computer, receiving data from
various sensors and sending commands to an autopilot to
maneuver around obstacles, to enforce adherence to a pre-
determined flight path, or to avoid intruders in the airspace.
ICAROUS provides path planning [17], sense and avoid [18],
and merging and spacing [19] for cFS-based systems. This
work uses ICAROUS as the primary onboard mission planning
software for free-flyers in-orbit. A diagram of the ICAROUS
system is shown in Figure 1.

Fig. 1. ICAROUS Architecture

D. Computer Vision Background

The 2D damage analysis application performs image seg-
mentation for the mock satellite and highlights of detected
damage. Image segmentation for objects is a well-studied com-
puter vision problem. Some techniques used in this research
effort are described below.

Otsu thresholding is a technique for extracting a binary
mask from an image. A foreground object can be segmented
from a background object if the intensities are different. A
threshold intensity level that separates low and high intensity
regions with minimum intra class variance is used. Otsu can
also be applied adaptively, i.e., as image region dependent [20].
Template matching is another technique for object segmenta-
tion. Section 1.2 of [21] describes basic template matching as
searching the image for a subregion (or vector) with the small-
est distance to the template vector. Color matching is used to
segment an object of a particular color. Global thresholding
generalizes intensity based thresholding [22]. In the methods
section, the global thresholding method is extended to a color
ratio based thresholding, which better suits this application.

After segmentation, highlighting of damage on the mock
satellite is posed as a filtering problem. For each window,
the goal is to give a binary result of normal or damaged.
Sobel edge detection is a filtering technique based on gradient
calculation in the vertical and horizontal image directions. The
sobel method involves 2D filtering with a kernel representing
a directional derivative [23].

Alternatively, convolutional neural networks (CNNs) are a
deep learning technique that takes image input and can return
classification (or detection) output. CNNs employ weight
sharing to enable effective training for a given function on
high-dimensional image input [24].

The 2D damage detection software is developed as a
cFS application for use in ICAROUS during flight. The 3D
modeling is performed for an object from a gallery of 2D
images. A technique called photogrammetry is used to perform
this function. The toolkit used in this work is AliceVision
Meshroom™ [25].

III. SYSTEM DESIGN

This work deploys ICAROUS with cFS in UAV mission
computers to simulate free-flyers operating in orbit. New
modules for ICAROUS provide high-level mission manage-
ment and multi-agent coordination. This work also develops a
cFS Vicon™ interface for indoor localization during research
and testing. Furthermore, a novel computer vision module is
implemented in cFS for accurately detecting damage in-situ.

A. System Software Architecture

Three new modules are added to ICAROUS for the free-
flyer damage-detection mission: Cognition, Guidance, and
Coordination. Figure 2 shows the various software modules
that comprise the flight software system used for controlling
the free-flyers.

Fig. 2. Flight Software Architecture

Cognition determines various levels of mission tasks for
each of the free-flyer including takeoff/land, assigning specific
waypoints for each free-flyer, and positioning for capturing
data with available sensors.

Guidance issues low-level commands to each free-flyer
based on their allocated tasks, such as changes in directional
velocity, position estimation, and local trajectory planning
functions.

Coordination manages the multi-agent aspects of the mis-
sion. This application accepts mission input from the ground
station, determines how to split up the mission parame-
ters/tasks based on requirements and number of agents avail-
able to deploy. The Coordination application also handles the
dynamic addition or loss platforms of free-flyer workers at any
time during the mission.

B. Platform Support Applications

1) Hardware Interface: In addition to ICAROUS suite
applications, a firmware interface module allows ICAROUS
to interface with the free-flyer firmware.

2) Positioning System: As autonomous systems, the free-
flyers require the ability to accurately determine position in
orbit with respect to themselves and an object of interest. To
use traditional GPS localization indoors, a cFS Vicon interface
application is developed. This application translates local area
positioning to GPS coordinates for real-time autonomous navi-
gation using a Vicon motion capture (mocap) setup. The Vicon
system is a commercially available indoor mocap system. The
flight space in this work utilized 16 HD mocap cameras. Each
free-flyer platform is marked with several tracking tags and
individually registered in the system.

3) Inter-craft Communication: Each system uses a spe-
cialized cFS application, namely the Software Bus Network
(SBN), for communication. SBN enables each instance of
cFS to receive messages published to the software bus by
any member of the swarm. For example, if telemetry received
from one free-flyer indicates its position is too close another,
modification can be made to flight paths to avoid potential
collisions while still progressing to its next waypoint.

C. Inspection Protocol Using Computer Vision

The inspection protocol uses computer vision (CV) tech-
niques on video streams provided by each free-flyer to identify
potential damage or anomalies. There are two subtasks for

the computer vision protocol: first, the object-of-interest (the
mock satellite) is segmented from the background; second,
damage is detected within a windowed area that corresponds
to the segmented satellite. The 2D algorithm isolates regions of
interest for autonomous operations and damage is highlighted
and visualized for the operation team in real-time. As a com-
plementary feature to 2D damage detection, 3D reconstruction
for visualization is also implemented for human-in-the-loop
post-mission analysis. The CV has been integrated into the
flight software system as a cFS application.

IV. IMPLEMENTATION

New ICAROUS modules and cFS applications are used for
swarm coordination and control. In particular, the following
modules were developed: a mission coordinator for decen-
tralized task distribution, custom flight planner for multiple
agents, networking module that enables free-flyers to share
flight plans and mission objectives, visual damage inspector,
Vicon Tracker interface for providing vehicle telemetry to
enable the damage detection and analysis, and custom flight
controller based on a Proportional-integral-differential (PID)
architecture to achieve the demonstration mission objectives.
Several libraries are also created to autogenerate nominal flight
plans for optimized video stability and field of view.

A. UAV Hardware Platform

In this demonstration mission, free-flyers are simulated with
the Parrot™ AR 2.0 Drone equipped with an ARM™ Cortex
A8 processor, 1Gb of RAM, and a barebones version of Linux
2.6 [26]. These platforms come equipped with a built-in WIFI
b/g/n chip for both establishing and connecting to wireless
networks. The sensors onboard each platform included a 3-
axis gyro, a 3-axis accelerometer, magnetometer, ultrasonic
sensor (for altitude measurements), and two cameras. A 720p
30 FPS camera faces forward on the UAV and is used to collect
video for the damage analysis in this demonstration. The other
camera is a downward facing wide angle lens sensor. This
camera is used for optical flow tracking, which allows for
smoother movement and hover.

Fig. 3. Hardware Architecture for Simulating Free-Flyer Swarms

Due to a limit of 100g payload and insufficient computing
power, the secondary mission computer payload communicates

to the onboard computer (OBC) remotely, as depicted in Figure
3. The Intel™ NUC miniature PC is chosen due to its small
form factor. Each NUC is connected to one OBC via the UAV
network. Each mission computer runs cFS and ICAROUS and
issues low-level actuation commands. The live video from the
forward-facing camera is streamed to the NUCs, where the cFS
CV application would analyze the video for damage patterns.

B. Drone Control Software

The Flight Control module provides two high-level func-
tions: convert velocity commands from cFS to low-level com-
mands for the AR 2.0 Drone and serve as a flight controller
to maintain trajectories with minimal error. The Parrot AR 2.0
Drone Software Development Kit (SDK) provides a standard
API to support for takeoff and land, hover in place, activate
emergency mode, and modify the roll, pitch, yaw, and gaz
(vertical thrust). Several control systems are implemented for
precise movement control, seen in Figure 4. A PID controller
is used for managing 2D grid-based navigation, bang-bang
controller for altitude, double setpoint controller for yaw
and field of view, and normalized proportional controller for
ground speed.

Fig. 4. High-level Control Overview

The resulting velocity output matrices were multiplied with
three sets of transformation matrices, to convert the values
from the local frame to the global frame of reference. Several
experiments were run to tune these controllers and determine
their effectiveness in comparison to off-the-shelf solutions.
The equations used for each controller are listed below. For
the UAV flight controller, Equation 1 is used to determine a
desired viewing angle for the object-of-interest. X and Y are
the Cartesian coordinates for the UAV and object-of-interest,
in the local frame.

� = arctan2
Ydrone − Yobject

Xdrone −Xobject
(1)

Equation 2 is used to calculate the yaw velocity of the drone
to change its camera orientation. Here, is the current UAV
heading, � is the desired heading, and max is the maximum
UAV angular velocity.

VY AW =

8>>>>>>>>>><>>>>>>>>>>:

0:25!max; � − > 5◦

0:75!max; � − > 15◦

0:75!max; � − < 15◦

0:25!max; � − < 5◦

(2)

Equation 3 is used to calculate the thrust needed to change
the UAV’s current altitude. Velocity input for UAV thrust,
where �Alt is the required change in altitude, Vx is the current
velocity in the X direction, � is the yaw scaling factor, and
VAlt is the vertical velocity required to stabilize the UAV.

VGAZ =

8><>:
Vx ∗ � + VALT �ALT > 0:5m

Vx ∗ � + VALT −�ALT > 0:2m

0:1m=s otherwise

(3)

C. Multi-Agent Coordination

In the most basic implementation of an inspection, the
ground station uploads a single flight plan to one free-flyer,
which then travels to each waypoint. The mission concludes
once all points have been reached. The Cognition and Guid-
ance applications guide the free-flyer effectively and safely.
These applications rely on receiving an initial flight plan
to carry out a mission. This becomes further complicated
as more than one free-flyer is introduced into the system.
The complexity increases with dynamic swarm sizes. The
Coordination application monitors the swarm and dynamically
allocates and distributes mission plans according to swarm size
and remaining waypoints from the flight plan that is uploaded
initially to each single free-flyer. Coordination evaluates, com-
putes, and distributes the mission tasks for its own free-flyer
and all other swarm members based on their spacecraft ID.
If a free-flyer is added to or removed from the system, a
reassessment of remaining waypoints and free-flyer positions
occurs, remaining tasks are redistributed. Coordination can
handle several scenarios, including:

1) Mission starts with one or more available agents
2) A new agent is added to the available group of platforms
3) An existing agent is no longer able to perform a mission

(loss of platform, communication, etc.)
4) A discrepancy in data is detected and new mission tasks

need to be added for robustness
5) The object undergoing inspection has moved and new

mission waypoints need to be determined

D. Automated Waypoint Generation

The goal of this mission is to use free-flyers to inspect a
spacecraft for damage using a computer vision approach. To
acquire sufficient visual data and ensure the detection of all
simulated damage, several tools are created that auto generate
various flight plans to obtain images at various angles and
distances. The tool requires a number of parameters, including

